A Hybrid Machine Learning System for Stock Market Forecasting

نویسندگان

  • Rohit Choudhry
  • Kumkum Garg
چکیده

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system. Keywords—Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Provide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks

Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...

متن کامل

An Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market

Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008